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We develop a model for the nonlinear oscillations of spherical drops composcd of aqueous foam.

Beginning with a simple mixture law, and utilizing a mass-conscrving bubblc-in-ccll scheme.
we obtain a Rayleigh-Plesset-like equation for the dynamics of bubbles in a foam mixture.

The dispersion relation for sound waves in a bubbly liquid is then coupled with a normal

modes expansion to derive expressions for the frequencies of eigenmodal oscillations. These

eigenmodal (breathing plus higher-order shape modes) frequencies are elicited as a function of

the void fraction of the foam. A Mathieu-like equation is obtained for the dynamics of the

higher-order shape modes and their parametric coupling to the breathing mode. The proposed

model is used to explain recently obtained experimental data.

PACS numbers: 82.70.Rr,83.70.Hq

I. INTRODUCTION

Foams and froths are ubiquitous in nature and indus-

try. They are the signature of vigorous, gas-entraining

mixing processes in liquids. A minimalist conception of

a foam would consist of a gas confined as bubbles within

a liquid host. The aqueous foams considered here are

composed of surfactant-bearing water and air bubbles.

A comprehensive review of foam theories and applica-

tions can be found in the textbooks by Edwards et al [1],

Exerowa and Kruglyakov [2], and the article by Kraynik

[3].
Theoretical treatments of the unique rheology of foams

go back at least to Mallock [4], who was motivated to

explain the common observation that "A tumbler con-

taining a frothy liquid gives a dull sound when struck".

Mailock showed that the sound speed for intermediate

void fractions was actually lower than its value for either

the wet limit, c,_t_ = 1500 m/s, or the dry limit, c_ir

= 340 m/s. This result has been borne out by a century

of subsequent work on bubbly liquids [5]- [9]. and, as

seen later, leads to key insights into the free vibrations

of foam drops.
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The present work is motivated by the continuing need

to measure, understand, model and eventually predict

foam mechanics and rheoloD' for wet or dry foams. To

this end, two of the present authors recently described

a non-contact technique in which small samples of foam

("foam drops", see Fig. 1) were acoustically levitate(t

and excited into resonance by modulating the levitation

field [10]. Our technique utilizes acoustic levitation to

provide both non-contact positioning and static and os-

cillatory excitation of foam drops. By measuring the

quadrupole eigenfrequency of a 3.8 mm radius foam drop

to be 63 Hz, we inferred a shear modulus of roughly 73-

78 Pa for a relatively dry foam. This value compared

favorably with experimentally determined moduli utiliz-

ing more traditional contact-based techniques ([11]-[16]).

The same technique has proven successful for determina-

tion of the surface rheological properties of single-phase

liquid drops[it1-[19].
The primary advantages of this acoustic levitation

technique are its elimination of the requirement for san>

pie contact containment, its ability to test foams of arbi-

trary gas volume fraction, and its ability to excite both

shear and dilatational motion. The technique relies on

a suitable physical model for the dynamic response of

spheroidal foam drops. The heart of this model is the

theoretical description of the foam material. Our caxiicr

work [10] modelled the foam as an effective solid elas-



tic medium.Whilesuccessflflin describingthesmall-
amplitudeoscillationsofadryfoamwitha fixedlattice
of bubbles,suchamaterialdescriptionhascertaindis-
advantages.First.a foamisonlysolid-likeforhighgas
volmnefractionsandsmallamplitudemotion.Second,
sucilaneffectiveelasticmediumtheoryonlyimplicitly
incorporatestheeffectofvaryinggasw)tumefractionvia
theeffectivedensityoftilemedium,andit cannotcapture
thephysicsofabubblymixture.Finally.thegasvohune
fractionisa dynamicquantity,andduringdilatational
motionof significantamplitudeit cannotbetreated_ks
a materialconstant.Wethusneeda modelcapableof
describingwetfoams.

Tile subject of the present paper is a theoretical in-

vestigation of the dynamics of wet foam drops. By us-

ing a bubbly-fluid approach we obtain a model for the

time-dependent response of a foam drop which retains

the nonlinearity of the bubbles response. By lineariz-

ing the equations we elucidate the resonance frequencies

for the breathing and higher-order eigenmodes of a drop.

We treat the coupling of shape and breathing modes, and

investigate numerically the nonlinear equations obtained

for the time evolution and interaction of the modal oscil-

lations. A key feature is the inclusion of a time-varying

void fraction in the equations.

We begin in the next section with an argument for the

relevant physics that must be included in the model.

II. FOAM MECHANICS, RHEOLOGY, AND

DROP DYNAMICS

One of the most important characteristic parameters

of a foam is its gas volume fraction c_g, or more commonly

the "'void fraction." A foam's thermodynamic, mechan-

ical, acoustical and theological properties are sensitive

functions of the void fraction. Three regimes of foam

morphology are typically identified. A "wet foam" (ap-

proximately 0 < a9 < 0.5) is essentially a bubbly liquid.
The individual bubbles are free to move about within the

liquid. Wet foams cannot support shearing motion, ex-

cept; at the surface of the individual bubbles. A "transi-

tional" or "'critical foam" (approximately 0.5 < a 9 < 0.7)

is comprised of bubbles whose dynamics are strongly

interacting, and whose surfaces may be in mechanical

contact with each other. This regime may be usefully

thought of as a phase transition between a liquid and

solid-like state. A critical void fraction marks the point

at which a foam begins to possess solid-like properties,

such as shear wave propagation and yield stress. The crit-

ical void fraction for three-dimensionM foams is approxi-

mately 0.67, which geometrically corresponds to random

close packing of bubbles. Finally, a "dry foam" is the

commonly encountered state in which the bubbles, at

least for low to moderate straining rates, have a fixed

position in a lattice. Such roanks behave as viscoelastic

solids for sufficiently small straining rates. However, a

dry foam may flow a,_ a liquid when slraim'd beyond a

critical point.

Theoretical investigations of rheological properties be-

gin with Derjaguin. [20! who derived an expression [\n the

shear modulus of an idealized dry foam and showed that

it was linearly proportional to the foam capillary pres-

sure. This result implies that a [barn's modulus should

scale as r._Tj_':_ Suhsequent theoretical and numerical

work has concentrated primarily on two-dilncnsiona[ ge-

ometric models limited to dry foams. The reader is re-

ferred to references [2t I [26] for examples of the ground-

breaking work in this area and to reference 127] for a

comprehensive review. Several theoretical models have

addressed l:he unique theological dependence on void

fraction of foams. Bolton and Weaire [28] introduced

a two-dimensional model that predicts the vanishing of

the shear modulus at a criti(aI void fraction. This model

is strictly valid in the dry limit. In contrtkst, a static but

bubble-based two-dimensional molecular dynamics sim-

ulation {29] captures tl_e transition features using wet-

limit assumptions. The model assumes spherical bubbles

that resist deformation because of their Laplace pres-

sure. Among other things, the model predicts the vanish-

ing of the shear modulus, but the scaling behavior near

the transition is different than that fo,md for dry two-

dimensional models.

It is interesting to qualitatively consider the dynamics

of foam drops in the limiting cases of wet, critical _md

dry. We consider a foam drop surrounded by a gas to

simplifl, the situation. To engage in even a brief discus-

sion. we must draw a distinc.tion between the breathing or

monopole mode and the higher-order shape or multipole

modes, since such motions are qualitatively different as

well. First we consider breathing mode osciUations. Tile

restoring force for perturbations Dora the drop's equilib-

rium volume is provided by the internal pressure of the

individual bubbles within the drop, which will expand

and contract when the drop volume is externally forced.

Surface tension play's a small role, since the Laplace pres-

sure 2G/Ro for a drop of radius Ro is much smaller than

the ambient or atmospheric pressure. The mass is that of

the liquid between the bubbles. Dissipation is provided

by the butk fluid motion, the surface fluid motions at the

drop surface and at the individual bubble surfaces, and

also by heat transfer and acoustic radiation of the indi-

vidual oscillating bubbles [30]. For critical and dry foam

drops, a primary difference is that surface tension be-

comes more important as a restoring force because of the

many thin film fluid connections which form inside the

drop. The mass continues to decrease as the void Dac-

tion increases. It is difficult to make any general state-

meat about the effect on dissipation due to increasing

void fraction, except to say that dissipative effects are

growing relative to inertial effects.

For shape oscillations of wet foam drops, the restor-

ing force for perturbations from the drop's equilibrium

shape is surface tension acting al the drop imerl'm'e.



Sincesurface-activeagentsarepresent,alocal._[arangoni
restoringforcedueto gradientsin surfacetensionalso
contributes.Theeffectivema,ssisonceagaintilemassof
theliquidcomponent.Thedissipationismorestrongly
affectedbythesurfacetermsat thedropinterfacethan
forthemonopolecase,andthethermalandacousticbub-
bledissipationtermsarenegligible.Forshapeoscilla-
tionsofcriticalanddrylearndrops,theinternalthinfihn
fluidconnectionsaddstiffnessto thedrop.plusallowing
thepossibilityof torsionalmultipolemodes.Asforthe
monopoiecase,themassisdecreasing,anddissipationis
againambiguousasthevoidfractionincreases.

Thediscussionabovehasimplicitlyassumedthatthe
internalpressureof themL,_tureinsidethedropisuni-
form(exceptfor theLaplacepressurecontributionto
the(againassumeduniform)interiorbubblepressure).
Thiswillholdtrueuntileitherthewavelengthofincident
soundisshortcomparedtothedropradiusR (which will

never happen during standing wave acoustic levitation),

or the velocity of the drop interface R approaches the

speed of sound in the mixture, which is also unlikely.

Uniform mixture pressure implies that all bubbles oscil-

late essentially in phase unless there are wide disparities

in the bubble size distribution, or nonlinear effects dom-

inate.

For both breathing and shape modes, foam drops near

the critical void fraction will experience a sort of mode

dispersion as bubbles begin to strongly interact with their

nearest neighbors. Energy initially concentrated in a

single global drop mode will be dispersed into motion

of small collections of interacting bubbles. The result

may well be an "apparent" increase in damping of the

global observable drop modal oscillation. While this is

highly, conjectural, we believe we have indeed observed

the apparent damping effect for forced quadrupole oscil-

lations of near-critical foam drops. For the same liquid

constituent, the quadrupole mode for both wet and dry

foam drops was underdamped and thus a resonance was

observable. However, for near critical void fractions the

resonance was unobservable. A de_ailed investigation of

this effect is a topic for future work•

Thus we turn our attention to a more dynamic and

bubble-based description of a foam, and in so doing we

explicitly incorporate the fact that we utilize acoustics

and acoustic levitation of bounded foam drops in our ex-

periments. We wish to improve upon such existing mod-

els by cousidering 3-dimensional cases, and by explicitly

incorporating bubbly fluid dynamics and acoustic wave

propagation in our model. We begin here by introducing

a three-dimensional (spherically- or a.xisymmetric) model

for the eigenmodal oscillations of spheroidal foam drops

in the wet limit.

III. WAVE EQUATION FOR WET FOAM

In this section we follow iN] t,) introduce tile wave equa-

tion for an aqueous foam in Ihe wet [imil. For the en-

visioned applications of this _malvsis. the liquid luay [)e

treated as inconlpressible. Vise(ms dissipation as it ap-

pears m the norllla[ ,'-;l, rI_s5 [)iti;lltc'e for individual bub})h!

oscillations is included. Thermal and acoustic dissipa-

tion are neglected. Likewise. we do not consider processes

such ms I)ubble coalescence. })reakup. or dissohu ion which

affect the number of bubbles and/or their equili})rimn

size.

To avoid confusion with the standard notation for ve-

locity potentials (note that several authors use o to de-

note the void fraction), let at at[d c_o be the fractional

vohune concentration, and p? and p_ the density of th("

liquid and the gas. respectively. Then the (tensity p of

the two-phase mixture is given by

p = (*lpz - n,tP,l. (1}

where az + a q = 1. With p,, << pt and the assumption

that all bubbles have ttle same radius a, we obtain the

following approximation for the mixture density:

4

p "_ pt(1 - (_q), _,j = _:ra'l,_. (2)

where n is the number of bubbles per mdt w)hlme of tile

mixture.

The dynamics of the bubbles in a foam may be treated

with a sphericMly-symmetric bubble-in-cell scheme. Ac-

cordingly, each single })ubblc in the bubbly li(lui_l is

placed in the center of a spherical cell with the radius

A chosen in such a way, as to cover the whole bubbly

mixture by cells.

(t

A -- _.t. (3)

It should be noted that ,4. a. C_q are variable in time and

space, and a < A << R typically. Here, R is the radius of

the drop.

Bernoulli's integral for spherically-symmetric incom-

pressible liquid motion in the cell may be written in the

following form:

P = Pa -- P/ aa + &2 + 7Pl (a2a)t pla4&22r4 (4)

where dots denotes time derivatives, r is the radial co-

ordinate with the origin at the bubble center, u is the

shear kinematic viscosity of the liquid, p,, is the liqnid

pressure at the bubble wall, which is rela,,'d to the g_L_

bubble pressure p_ by the formula
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litre, o- is the surface tension coefficient and u is the

kinematic viscosity of the liquid. Often, it is treated as

an "effective" viscosity which accounts for dissipation 181.

Faking into account that tile liquid pressure at the

ceil boundary is equal to the pressure of the two-phase

mixture p [5] one can obtain the following generalized

Rayleigh-Plesset equation for radial bubble mo'cion in the

cell:

3 ( _.[C4/3_ &2 Pa -- P+ +3 3 q J p_

(6)
The gas pressure in the bubble is assumed to be uni-

form and variable in time and may be calculated via a

polytropic approximation.

'pg = p0 + (7)

where n is the polytropic exponent (n = "y'g for 'adia-

batic and _ = 1 for isotherm',d oscillations of the bubbles,

where 2,'g denotes the gas adiabatic exponent).

Next we outline the approach to obtaining the mixture

wave equation. The conservation equations for the num-

ber of bubbles, the mass of the mixture, and momentum

of _he mixture are first linearized about the unperturbed

state of the mixture. For this purpose we introduce small

perturbations p', p', _. n'. and a' of the equilibrium val-

ues Po, P0 = pl(1 - ag0), vo = 0, no, and ao such that

p = P0 +P', P = P0 +P', b" = g', n = no +n', and

a = ao + a'. Then we linearize equation (6) and omit

any dissipative terms. Combining these tinearized bub-

ble dynamics and mixture equations yields the (inviscid)

equation of wave propagation in foam mixtures. Here

and in the following we will write this equation in terms

of a velocity potential _ (g = _) keeping in mind that

all variables p', p', and _o are proportional to each other

in the linear approximation.

02__c_V2 _ c_ 02
Ot---T ._ Ot,a V2_ = 0, (8)

c_ =

3npo + (3_ - 1) 2o.
ao

3p_aqo(l - ag0) '

W_ B =
t'3'

I - ag o

2o"

3_po + (3t¢ - I)--
ao

,)
Pta5

Here of3 is the speed of sound in at wel ['()_1111. _'24b{ iS

tile frequency of free oscillations ,)l" _ingle bubl)le in an

infinite liquid. _'t3 is the frequency of fi'ee oscillatious of

bubbles in a foam.

IV. NORMAL MODES OF A SPHERICAL

FOANI DROP

Let us consider a fimm sample consisting of a spherical

liquid drop of radius R with N spherical gas bubbles dis-

persed inside. To derive formulae for the eigenfl'equen('ics

of such a foam sample, let the wave fichI inside the foam

drop be described by

= _ exp(iwt), (9)

where ._ is the (unknown) frequency of free oscillations.

Substitution of (9) in the wave equation (8) results in

the Hehnhohz equation tbr the amplitude of the velocity

potential

,.;2

K724_ +/,:2(.b = O, /,.2 _ (l I))

4)
_B

The oscillating surface of a foam drop can be expressed

in the following way:

r, = P_) + _ b,_P,,(cosO) exp ia.'t.

n=O

(ll)

where P,_(cos0) are the Legendre polynomials, and the

coefficients bn are the unknown amplitudes of eigemnodal

shape oscillations (b,_ << R0).

The solution of Eqs (9).(10)

_2 = _ B.j,_(kr)P.(cosO)expiwt (i2)

n=0

describes the velocity potential inside the foam drop.

Here j. are the spherical Bessel flmctions, and the /3,,

are the unknown amplitudes for the acoustic field.

The relationship between bn and B. can be found by

matching the normal component of the foam velocity at

the drop wall with the normal displacenlent of the drop

surface at that point, which in the linear case is

r:/_ 0

From Eqs (12).(13) and (It) we thus obtain a formula

for the velocity potential in tile foam drop



rz=0

(14)

Bv hnposing normal stress continuity we obtain the

internal pressure

2rr t)qs

P = P0 + _ - Pz(1 - a,0)_ -=
(15)

2(T ._2 bn j.(kr)
Pn (cos O) exp iw't.po+ +p_(t-%o)=- k j'(kRo)

n=0

(t6)
That pressure must be balanced with sum of the external

pressure and the Laplace pressure p_

2a o_ (n - 1)(n + 2)b.P_(cosO)expiwt.

rl=0

(17)
Equating terms with the same n we find the following

equation:

= 7d j (kno)' = 0, ....

Eq. (18) together with Eq. (10) constitute a full set of

equations to calculate resonance frequencies of a foam

drop.

Let us consider two cases: monopo[e (breathing) os-

cillations (n = 0) and quadrupole shape oscillations

(_ = 2).

A Breathing mode oscillations

When n = 0, Eq. (??) becomes:

_,2 = _ 2_k j;(kRo) (19)
p_(1 - a_o)R] jo(kRo)'

Using an explicit expression for the spherical Bessel

function of zero order (jo(kRo) = sin(kRo)/kRo) this

equation may be presented in dimensionless form as

ze sinz ( sinz)
+s cosz-_ =0, (20)

1 + bz 2 z z

c 2_Y
= kR_o, b = s =2 2 ' '_ "

a_'BR o pl(1 - a_o)Rocb

For typical parameter values used in our experiments

[10 i the dimensionless variables b and s are very small

(b "._ lO -:_, ,s ".- 1()-t,_ \Vhen 5 am[ .s vqual zero. Eq. (20}

reduces to sin(z) = 0, for which the solution is z = m=.

That means that Eq. (20) may be used to ealculale a

small correction to that solution.

z = m;r +z. z<< rr. m =0,1 ..... (21)

Substitution of Eq. (21) into Eq. (20t [cads to tiwsoht-

lion

1 + bT(-': = m= 1 75 .s) . (22

which gives the following generalized fornmla for the free

monopole oscillations of a foam drop (compare to Eq.

(24))

.)

_SB

3 /" _ l + brr2 "_ R 20 1,3
1 + ! ---_ a,a0( 1 - (_0) + 1 - a,ji_

m2_2 27'S / a 5

(.,:_)
It is interesting to note that the effect of including surface

tension is to lower the eigenfrequency.

For Ro large enough to ignore surface tension pressure

(thus letting parameters b and s go to zero), we obtain

ao2 = w_n (24)

rgt2";r 2 rl_ ' -- O_ gt}

Eq. (24) was evaluated for the parameters of a

foam drop taken from the experimental observations [10i.

Namely, /_ = 3.78 ram. 0.3 mm < ao < 0.5 ram. The

normalized frequencies w/aaSB versus foam w)id fraction

a_o for m = 1 are shown in Fig. t. The da_hed line de-

notes a gas volume fraction a¢_ = 0.77 of tile foam drop

used in [10]. One can see that tile monopole frequency

of the foam drop asymptotes to the single bubble result

wsB in the low void fraction linfit, and to infinity for a

void fraction of unity. In between these limiting vahms,

the foam drop frequency, is some fraction of._,ss.

Typically, Pm >> a0, and Eq. (24) may be simplified as

follows

o

3 R a
0

m2rr 2 _ a_o(1 - a,j0)
_0

Thus, with the Eq. (8) and taking into account that

2er/ao << Po one can get the formula for the frequency of

the foam drop monopole oscillations, which looks similar

to the well-known Minnaert formula [31] for single bubble

monopole oscillations

3npo v/aaqo( I - a_o)Ro. (26)
a12 _ pla---_ a. _- trtr(



Here. a. is an effective bubble radius. It is e_.sy to es-

tin_tte th_tt ['or tile experimental data (Ro = :_.78 ram,

a_10 = 0.77, 0.3 mm < a0 < 0.5 ram) the effective bubble

radius a. = 0.88 mm is larger than bubble radius and

smaller than radius of the foam drop (a0 < a. <'P_)).

These results, especially Eq. (24) may be usefully com-

pared to previous results for the breathing mode of a

co_npact bubble cloud in water derived by several au-

thors [321 [3a1. In those works, the motivation was to

explain low frequency ambient noise in the ocean ,as due

to collective oscillations of clouds of bubbles. The low

void fraction limit is the same, but the high void frac-

tion limit is not, since in the present case the high void

fraction limit corresponds to the effective mass of the os-

cillator approaching zero, whereas in the bubble cloud

scenario, the high void fraction limit corresponds to a

single bubble of radius R.

It is remarkable thal; (approximately) the frequency

does not depend on bubble radius, but depends only on
the void fraction of the foam and the radius of the foam

drop. It is clear that the apparent difference between

frequencies for different bubble radii shown in Fig. 1 is

only due to differences in the single bubble frequency '_so

by which we normalize. For instance, when ago = 0.77

(dash line) the frequencies of monopole oscillations for

ao = 0.3 mm and a0 = 0.5 rnm are equal to 3708 Hz and

3674 Hz respectively. This strengthens the ease for our

working assumption that the most important parameter

is the void fraction - the details of the bubble size distri-

bution should not affect the leading order results.

B Shape mode oscillations

When rz = 2 Eq. (??) becomes:

4ak j_.(kRo) (27)
ua_ = pt(l - C_,o)Ro 2 j2(kRo)"

This equation may be presented in dimensionless form as

•t Z
z _ a2( ) (28)

1 +bz 2 = zsj_),

where dimensionless variables z, b, s are defined in gq.

(20).

To look for the low-frequency solution of this equation

one should use the asymptotic expansion for the spherical

Bcssel function of second order when z --+ 0 [36],

z2( z 2 ) 2 2 aj2(z)_g 1-_ , j_(z)_--_z-'_.. (29)

Then Eq. (28) may be rewritten in the following form

l+bz 2 =-- I- . (30)

There is one low-frequ('ncy solltti(m of thi._ _'qua_ti_)H

which is appl'oxintallely ('(ltt;tl It)

:- = 1._ i - l._ -t) . (:ll)

hi tet'l[IS of ,,J.

I-- "7Ro 3_:p_) + (3_" - 1177 °

8a
,,O_, 2 --

Dt(I - a_0)Ri} ' (:_:_)

Here _JL2 iS the Land_ frequency of quadr_tpolc oscilla-

tions for an inviscid and incompressible liquid drop i37]

of density p_(t - a,a,i) surrounded by a vacuutll, lit oltr

case aaa2 _- 210.s- l Eq. (32) ptesents a correction to

that frequency due to foam compressibility. For our ex-

perimental parameters the correction term is negligibly

small (_ t0-4).

V. COUPLING OF BREATHING AND SHAPE

OSCILLATIONS

Here we consider the influence of breathing

('monopole' or 'radial') oscillations on the quadrupole

mode. This corresponds to an experimental situation

in which the breathing mode is directly excited by an

external field with pressure gradients large compared to

the drop radius R.

It is instructive to colnpare the period of quadrupole

oscillations with the time required for an acoustic wave

to cross the foam drop. At frequencies about 200 .s- t (see

_La in the previous section) the period of oscillations is

about 3. 10 -2 s. The speed of sound for our foaln is

e8 ~ 30m/s. Then for a foam drop with radius R =

3.78 turn, the acoustic transit time is about 10 -4 8 which

is much. less than the period of the quadrupolc mode.

Thus, one can assume the foam drop liquid prcss_re to,_

to he uniform in space and variable in time, as was done

for individual bubbles in section 1 above.

As in Section 3, each single bubble in the bubbly liquid

is placed in the center of spherical cell with the radius .4

chosen in such a way as to cover the whole bubbly mix-

ture by cells. The only difference is that in Section 3 all

variables were functions of time and space coordinates.

In the present case, all these variables depend only on

time. Thus, Eqs (2), (3). (5), (7) are valid, but for tem-

poral variations only.

Taking into account that the pressure of the two-ph_Lse

mixture Pd is uniform in space an(t time-(tepen(tet_t, one



cangetthefollowinggeneralizedRayleigh-Plessetequa-
tionforradialbubblemotionina cell(conipareto Eq.
t6)):

l- , )aa+ 7 1-?<<, +3 " ) = p-_7--
(34)

Conservation of the (incompressible) liquid vohinlc in

the foam drop leads to the following simple relationsh{p

between bubble and drop radii.

R - = ,,v - (35)

Eqs. (3),(5)-(7),(refR-P-1), and (35) form a complete

nonlinear system that describes radial motion due to

foam drop oscillations.

[n case of weak (linear) oscillations the system may be
reduced to a forced linear oscillator:

The velocily _lis_rit)ul ion and potenl;ial in,qde the foam

drop are:

Or it. + d' = _'- ztB,,(l)r"-lP,,(cosO)
:l=l

(:_o )

Rr 2

= "_"+ # = 2---ff+ u,,it),."P,,(cosO) (4o)
rt= i

Here B,,(t) arc the unknown amplitudes of the foani mix-

ture motion due to shape oscillations.

The relationship between b,_(t) and B,,(t) can be found

by matching the normal component of the foam velocity

at the drop wall with the normal displacement of the drop

surface at that point, which tn the linear approximation
is

+_,bR = -Fsin_t, (36) w! .... = i-,. (-11)

F = a,jokp

p_(1--_tah "C_.o ) ag

Here /_ = (R - Ro)/Ro is the relative foam drop radius

fluctuation, .o_ is the frequency of free oscillations of

bubbles in foam (see Eq. (8)), Ap is an external driving

(Pd = Po + Apsinwt). The Laplace pressure on the drop

wall is neglectcd.

In order to investigate coupling between breathing

and shape oscillations it is _Lseful to consider the radial

breathing motion as the base motion (below marked by

an asterisk) and shape oscillations as a perturbation of

this base motion (below marked by a tilde). In the homo-

baric approximation discussed above, the velocity distri-

bution w. (r, t) for monopole oscillations (which satisfies

the mass balance equation for the foam mixture) is given

by

R
w. = _r. (37)

The dynamic drop shape is expressed by the expansion

r._ = n(t) + _ b,_(t)P=(cosS), (38)

n=l

where P.(cos0) are the Legendre polynomials, R is the

instantaneous foam drop radius and the amplitudes of

eigenmodal shape oscilkttions bn (bn << Re) are unknown

functions of time. Our goal is to derive a coupled set of

differential equations for the variables R(t), b_(t).

From Eqs (38),(39) and (-11) we thus obtain the for-

mulae for the velocity and velocity potential in the foani

drop

R, r 2

'0= D,,- _b,_ _P.(_osO),
rt_ 1

(42)

w= + m, _, = D,,- b_ _7,__ &(cosO).
n_i

(43!
In order to derive an approxiInate equation for drop

shape oscillations let us consider the momentum equation

for the foam mixture,

dg

Pd-7 -_ _p = 0, (44j

where d/dt is the material derivative, and ff is the veloc-

ity of the mixture (liqukt and bubbles move with equal

velocities). We now take a linearized form of the radial

component of (44) as follows.

Off, O& _ Ow, "_ O_o. -_-+_'.-b-7 +_'-aT-r) +_=0. (45)

Here p. = pt(1 - 39) is a flmction of time. Integration

over the radial space coordinate r leads to the following

specific form of Bernoulli's integral

(0¢ a-w._)+/_ = _(t). (16)P. -_"



The flmction _(t) may be determined by evahmting the

[eft-hand-side of Eq. (46) at the limits r = r_ and r = 0.

We obtain approximately

57.1 = b_ - _-b,, Po(eos0), w.,..... _ R.
r=Fs rt=].

£(n- 1)(n + o)_!..... _. _ R2 " b,_P,,(cosO).
rt=].

Then Eq. (??) leads to the following equation for the

evolution of the amplitudes of the axisymmetric modes

(n-l)n(n+2)o"P. R3 _] b,_ = 0. (47)

which taking into account that p.R 3 = pt(t -ae0)R 3

may be rewritten as follows

( _) , (n-1)n(n+2)_b_ + _,. - b, = 0, _2 = pl'_l-ag---0)R----_ '

(48)

where _L_ is the Lamb frequency of shape oscillations of

a foam drop with mode number n and effective density

pl (1 - ago ). This result is analogous to the well-studied

problem of parametric shape oscillations of single bubbles

in an infinite fluid, see for example [38] and [39].

To obtian an analytical expression, if we consider only

linear foam drop monopole oscillations, then the solution

of Eq. (36) is

/_ = F sina_t (49)

and Eq. (48) may be presented in the form of .Mathieu's

equation.

d2bn

d7.2- + (K - 2esin 2r)b,_ = 0,
(50)

4,_ 2F a_t

K = %-7" -_= _ _ .2' " = T

Solutions of Eq. (50) are well studied (see [36]). There

exist two types of solutions in the inviscid limit: bounded

(stable) and unbounded 0rustable) in time.

TBD

VI. NUI_IERICAL RESULTS

A Nonlinear breathing dynamics

B Parametric instability

It is beyond the scope of dlis work to inve,_tigate (tissi-

pative effects. Nevertheless in t.he low void fraction limit

we may incorporate the effects of weak liquid viscosity

into the equation of motion for the shape oscillations de-

scribed by Eq. (48). We give here without deriwttion die

parametric equation of motion including weak damping

of the shape oscillations:

'-"L,, - = ,_L,,= /)/(l - aq0)R i

(5l)
where dr, is the classical expression for the weak vis-

cous damping of the shape oscillations of a pure liqmd

drop . We integrate Eq. (51) silmfltaneously with Eqs

(34),(5)-(7),(35) to investigate the effect of a time-varying

void fraction on the stability of the spherical foam drop.

The regions of parameter space (/£. s) where one ot)-

rains stable or m_stable parametric shape oscillations are

shown on Fig.2. where stable zones are colored in black.

One can see that the optimal driving frequency leading to

parametric instability is two times larger than the eigen-

frequency of the shape oscillations (K = t). the 2:1 ex-
ternal resonance.

In Fig. 3 we plot the frequency of quadrupole oscilla-

tions wL2/2rr and the parametric driving resonance fre-

quency .J = aJ,. = 2wL2 versus foam void l_action _0.

For our experiments, the _'(2) "_ 210s-t, the frequency

of parametric resonance is ._,. _420 .s-1. it corresponds

to a frequency f = ._,/27r _ 65 Hz, which was observed

in experiments [10).

VII. DISCUSSION

A new bubble-based mathematical model of foam drop

dynamics is presented. According to this model different

types of foam drop oscillations are analyzed. The derived

formulae are used to explain the experimental data pub-

lished recently it0]. In that work, an experimental tech-

nique was demonstrated for acoustically levitating aque-

ous foam drops and acoustically exiting their spheroidal

modes. Results were presented in which a foam drop with

gas volume fraction a_0 = 0.77 was levitated at 30 KHz

and excited into a quadrupole resonance at 63±3 Hz.

Here it is shown that monopole (radial) oscillations

and quadrupole (shape) oscillations, for foam parameters

taken from experimental observations, are characterized



bytwodifferentscalesof fi'equencies:about3700Hzfor
monopoleoscillaLions,andabont33tlz forquadrupole
oscillations.

Monopolefrequency,beingfar fromboth,levitation
frequencyandquadrupolefreqnency,probablydoesnot
playanyrolein thephenomenon.Theqnadrupoleos-
cillation may be exi_ed by parametric resonance mech-

anism. The highest frequency of the parametric exita-

lion is about 65 Hz, which corresponds with experimental

data [1()] very well.
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